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SUMMARY Advances in HIV-1 therapy have transformed the once fatal infection
into a manageable, chronic condition, yet the search for a widely applicable ap-
proach to cure remains elusive. The ineffectiveness of antiretroviral therapy (ART) in
reducing the size of the HIV-1 latent reservoir has prompted investigation into the
mechanisms of HIV-1 latency and immune escape. One of the major regulators of
apoptosis, the BCL-2 protein, alongside its homologous family members, is a major
target of HIV-1-induced change. Recent studies have now demonstrated the associa-
tion of this protein with cells that support proviral forms in the setting of latency
and have helped identify BCL-2 as a novel and promising therapeutic target for
HIV-1 therapy directed at possible cure. This review aims to systematically review the
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interactions of HIV-1 with BCL-2 and its homologs and to examine the possibility of
using BCL-2 inhibitors in the study and elimination of the latent reservoir.

KEYWORDS BCL-2 family, antiapoptosis, apoptosis, human immunodeficiency virus

INTRODUCTION

First identified in 1983 (1), the human immunodeficiency virus (HIV) is responsible for
the establishment of a chronic and incurable infection in humans. Following its clinical
emergence in the latter half of the 20th century, HIV quickly achieved pandemic status
and became one of the leading causes of morbidity and mortality worldwide.

Upon infection, HIV causes a progressive deterioration in the immune capabilities of
the infected host, gradually resulting in a critically immune-deficient condition known
as AIDS. HIV-1-associated CD4 T-cell depletion may occur as a direct result of the viral
life cycle or as a result of the increased susceptibility of uninfected bystander cells to
undergo cell death, initiated by soluble viral proteins or virally induced immune
mediators, through mechanisms such as apoptosis, necroptosis, autophagy, or pyrop-
tosis (2–5).

With the advent of HIV highly active antiretroviral therapy (HAART), it has been
possible to reduce the once rapidly fatal illness to a chronic but manageable condition.
The unfortunate caveat to viral suppression achievable with modern antiretroviral
therapy (ART) is the rebound in plasma viremia observed with its interruption, facili-
tated by the survival of intact proviral forms in a pool of latently infected cells, referred
to as the “viral reservoir” (6). The latent HIV reservoir refers to infected cells which
harbor integrated replication-competent HIV-1 provirus but which do not actively
produce the virus or viral proteins.

It is an apparent contradiction, then, that disease associated with HIV is character-
ized by increased cell death of CD4 T cells, and yet, the persistence of HIV in the setting
of immune responses and antiretroviral therapy depends on the long-term survival of
latently infected cells. Accurately identifying and targeting this latent viral reservoir is
an important and ongoing goal for HIV research with the aim of developing a potential
cure (7). Therefore, understanding how the latently infected cells survive in an other-
wise proapoptotic milieu is critically important to develop successful viral eradication
strategies.

Throughout the infective process, the HIV-1 virion is able to induce changes in the
expression of BCL-2 and its homologs to induce both pro- and antiapoptotic states (2).
The recent recognition that these proteins could serve as targets for therapy against the
latent reservoir, thereby serving as a potential means of cure, necessitates an under-
standing of the interactions between virus and host and an examination of these virally
induced modulations of BCL-2 expression and function.

THE BCL-2 FAMILY

Since it was first identified in 1984 (8), BCL-2 and its functions have been the subject
of intense study. The functional quality of this protein to prolong cell survival (9)
provided a new outlook to the understanding of cell proliferative disorders. The
ascending burden of cellular overgrowth was recognized to be a result of not only
uncontrolled proliferation but also the ability of the proliferating cells to evade pro-
grammed cell death events.

The discovery of the proapoptotic BCL-2 homologous protein BAX in 1993 (10)
demonstrated that these proteins are members of a larger BCL-2 family of proteins that
together are critical to defining the fate of individual cells and, thus, to the regulation
of both cell survival and cell death. Subsequent studies have identified multiple such
homologs with both pro- and antiapoptotic functions. Though the members of this
family have been shown to be functionally involved in other cellular processes (re-
viewed in reference 11), this article focuses mainly on the members of the BCL-2 family
in their role in apoptosis.

At homeostasis, an organism requires cellular machinery to manage physiological
and pathological changes which may result in a phenotype unconducive to normal
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functioning. Cellular function may be lost or decreased due to a host of factors, such as
aging, genetic defects, environmental insult, or infection. Cellular responses to these
insults may result in cell death occurring through one of numerous mechanisms, such
as autophagy, necroptosis, and apoptosis (reviewed in reference 12).

Apoptosis specifically refers to a form of programmed cell death (13) that serves to
clear functionally impaired or infected cells and is essential to maintaining an appro-
priate cell number in an organism. Inadequate apoptosis has been identified as leading
to cancer or autoimmunity, while abnormally excessive apoptosis has been observed
under conditions such as immunodeficiency and infertility (14).

A variety of triggers may be responsible for the initiation of apoptosis, and these
may be exogenous or endogenous to the cell. Depending on the point of initiation and
the downstream substrates involved, the pathways that govern the apoptotic process
have been classified into an extrinsic pathway, triggered by the binding of exogenous
initiators, typically to their respective death receptors, and an intrinsic pathway, trig-
gered by the release of mitochondrial proteins into the cytoplasm. A third pathway,
termed the perforin-granzyme pathway, is utilized by effector T cells to induce apop-
tosis and may operate through a caspase-dependent or -independent mechanism (13).

The intermediaries for these pathways are a family of cysteine-dependent aspartic
acid-specific proteases termed caspases (15). Caspase activation causes the cleavage of
specific substrates, which may range from a few to a few hundred, depending on the
caspase and the cell type (reviewed in reference 16), involved in structural integrity or
nuclear functioning (14). Caspases generally cleave these target substrates at sites
following aspartate but may also cause protein cleavage following glutamate or
phosphoserine (16, 17). Though it is important to note that individual caspases have
low redundancy with regard to their target substrates, the end proteolytic effect is
generally similar across different cell types (16).

Though the intrinsic, extrinsic, and caspase-dependent granzyme B pathways differ
in their initiation, they eventually converge, leading to the common final pathway and
ultimately leading to cell death (15).

The BCL-2 family consists of a group of structurally homologous proteins that vary
functionally to either potentiate or antagonize apoptosis. These proteins serve as
important intermediaries in the intrinsic pathway of apoptosis. It is important to
understand the properties and mechanistic activities of this family of proteins to better
conceptualize the apoptotic process.

Classification

Members of the BCL-2 family may be classified based on their structure and
function.

Structurally, BCL-2 contains four BCL-2 homology (BH) domains, referred to as BH1,
BH2, BH3, and BH4. These domains are the defining feature of this family and are
conserved across both pro- and antiapoptotic members (18). The multidomain mem-
bers of this family exhibit a highly conserved structure, and, critically, all display a
hydrophobic groove on their surface. This groove is essential for interactions between
the different BCL-2 family members and is therefore key to determining the survival
status of the cell (19).

Functionally, the multidomain homologous proteins BAX and BAK (and possibly
BOK) serve to promote apoptosis, while the multidomain homologs, BCL-2, BCL-XL,
BCL-W, MCL-1, Bfl1/A1, and BCL-B, protect against it (11).

The importance of the proapoptotic BCL-2 homologs to the intrinsic apoptotic
process was evidenced with experiments which showed that cells that were doubly
negative for both BAK and BAX were resistant to apoptosis induced by a variety of
stimuli, such as growth factor deprivation; treatment with staurosporine, etoposide, or
sodium butyrate; exposure to UV radiation; and endoplasmic reticulum stress (20, 21).

In addition to the multidomain proteins, a secondary group of related proteins
consists of those with only the BH3 homology domain, but these proteins are capable
of binding to and regulating the activity of the multidomain homologs (22) (Fig. 1).
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The BH3 domain-only proteins, BID, BAD, BIK, BIM, BMF, HRK, NOXA, and PUMA,
which are proapoptotic in nature, are responsible for adding a secondary layer of
control for this system and act by promoting the proapoptotic effects of BAX and BAK.

The BH3 domain-only proteins exert their influence through two possible mecha-
nisms: directly, by binding to and causing conformational changes in the proapoptotic
homologs BAX and BAK, or indirectly, by inactivating the antiapoptotic (23) homologs
BCL-2, BCL-XL, MCL-1, BCL-W, Bfl1/A1, and BCL-B. The BH3-only proteins tip the balance
toward cell death when they reach concentrations sufficient to achieve both the
inactivation of the antiapoptotic proteins and the activation of BAX and BAK (19).

Interestingly, the members of the BH3-only group express different affinities to their
multidomain counterparts, depending on the sequences presented in the correspond-
ing surface groove (19, 24).

The proteins BID, BIM, and PUMA were found to bind with a high affinity to all the
antiapoptotic multidomain homologs, whereas BAD selectively bound BCL-2, BCL-XL,
and BCL-W. NOXA was found to selectively bind MCL-1, and Bfl1/A1, BIK, and HRK were
found to preferentially bind BCL-2, BCL-W, and Bfl1/A1 (24). Differential binding affin-
ities have also been described among the multidomain homologs, with BAX binding to
BCL-2, BCL-XL, MCL-1, or BCL-W and BAK preferentially binding to MCL-1 and BCL-XL
(25, 26).

BCL-2 and BCL-XL have also been demonstrated to influence cell death through
autophagy via the binding and inactivation of the BH3 domain-containing protein
Beclin-1, a key molecule in the autophagic process (27–29).

Models of Interaction

The end result of proapoptotic BCL-2 family protein activation is mitochondrial outer
membrane permeabilization (MOMP). The integrity of the mitochondrial outer mem-
brane is essential for cell survival. Outer membrane depolarization results in the release
of several proapoptotic proteins, such as cytochrome c, apoptotic protease-activating
factor 1 (Apaf-1), apoptosis-inducing factor (AIF), and second mitochondrion-derived
activator of caspases (SMAC)/DIABLO, which are usually stored between the inner and
outer mitochondrial membranes. These proteins subsequently activate downstream
caspases and result in cell death (30). This cell death pathway is referred to as the
“intrinsic pathway” of cell death and is discussed in more detail below.

A growing understanding of the interactions between the pro- and antiapoptotic
homologs of BCL-2 and how they influence the apoptotic process has led to the
postulation of several models describing their mechanisms of activity. These models
have been refined over time to include detail on new developments and have been
reviewed extensively elsewhere (reviewed in reference 31). They are briefly summarized
below.

The original rheostat model suggested that the ratio between pro- and antiapop-
totic BCL-2 homologs determines the fate of the cell, with the overexpression of

FIG 1 Classification of BCL-2 proteins. BCL-2 proteins may be classified based on structure and function.
Structurally, they may be classified into multidomain proteins (consisting of four homology domains,
BH1, BH2, BH3, and BH4) or single-domain (BH3 domain-only) proteins. Functionally, they may be
grouped as having a proapoptotic or an antiapoptotic function.
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proapoptotic proteins driving the cell toward apoptosis. This model suggested that at
homeostasis, the proapoptotic effects of BAX and BAK are directly inhibited by their
sequestration by antiapoptotic homologs, such as BCL-2, preventing their interaction
with the mitochondrial outer membrane and thereby preventing the resultant mem-
brane depolarization and apoptosis (10). The direct model of activation incorporated
the role of BH3-only proteins, classifying them into activators and sensitizers (22, 31). In
this model, the BID-like proteins, which display binding affinity to both the pro- and
antiapoptotic BCL-2 homologs, serve to directly activate BAK and BAX, while BAD-like
proteins, which selectively bind only to the antiapoptotic homologs, serve to bind and
inactivate these proteins, thereby allowing the BID-like proteins to be displaced and
initiate apoptosis (31). The BID-like activator proteins are sequestered by the multido-
main antiapoptotic proteins, like BCL-XL (32), and are limited in their activity until they
are released upon the binding of sensitizer proteins. The direct model also proposed
that the antiapoptotic function of multidomain homologs is accomplished by the
sequestration of the BH3 activators and not BAX and BAK directly (32).

In contrast to the direct model, the displacement model of activation considers BAX
and BAK to be constitutively active, with their proapoptotic activity being inhibited by
sequestration with antiapoptotic homologs. The model suggests that upon the binding
and inactivation of the multidomain proteins by BH3-only proteins, bound BAX and
BAK are displaced, which initiates apoptosis (31).

The embedded-together model subsequently incorporated the involvement of the
mitochondrial membrane in the conformational changes occurring in BAX and BAK.
This model meshed the suggestions of the direct and displacement models by sug-
gesting that while BAX and BAK can be activated by BH3-only activator proteins, they
are also constitutively capable of initiating MOMP. It was also suggested that the
interaction between the activator BH3 proteins and antiapoptotic proteins can result in
either a proapoptotic or an antiapoptotic phenotype, with the survival of the cell being
dictated by the relative cytoplasmic concentrations of each. An increase in activator
concentration would allow for sequestration and inactivation of antiapoptotic proteins,
thereby reducing their ability to bind BAX and BAK. Conversely, an increased relative
concentration of antiapoptotic proteins would prevent BH3 activator effects on BAX
and BAK activation (31, 32).

The subsequently proposed unified model classified antiapoptotic activity into two
modes, with mode 1 being the sequestration of BH3-only proteins and mode 2 being
the sequestration of BAX and BAK. The model states that mode 1 is a less effective
inhibitor of MOMP, being easier to overcome than mode 2 (33).

The proapoptotic BCL-2 homologs may therefore act through a set of different
mechanisms to achieve their end goal of MOMP. The fluidity of the interactions and
their susceptibility to change based on relative cytoplasmic concentrations possess the
potential not only to precipitate disease but also to serve as a target for therapeutic
intervention.

PATHWAYS OF APOPTOSIS
The Extrinsic Pathway

There are three components required for the initiation of apoptosis through the
extrinsic pathway: an exogenous ligand, a corresponding cell surface receptor for
the ligand, and the respective cytoplasmic death domain associated with the
receptor. The successful binding and association of all three components allow for
the activation of an initiator caspase, such as caspase 8, which leads directly or
indirectly to the activation of caspase 3 and the final common pathway, leading to
apoptosis.

The ligand-receptor interactions that are most frequently involved are Fas ligand
(FasL) binding to Fas receptor (FasR), tumor necrosis factor alpha (TNF-�) binding
to tumor necrosis factor (TNF) receptor 1 (TNFR1), and TNF-related apoptosis-inducing
ligand (TRAIL/Apo2L) binding to either DR4 (TRAIL receptor 1) or DR5 (TRAIL receptor
2). The binding of these ligands to their cell surface receptors causes the respective
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intracellular adapter proteins to associate with the receptor Fas-associated death
domain (FADD) to FasR and TNF-�-associated death domain (TRADD) to TNFR1 (13, 34).
FADD also associates with TRAIL/DR4-DR5 binding (35). The death effector domain
of FADD then associates with the zymogen form of caspase 8 and, possibly, caspase 10
(35, 36), leading to the formation of the death-inducing signaling complex (DISC) (13,
37). TRADD cannot directly induce DISC formation, relying on the recruitment of FADD
to convey the signal downstream. Autoactivation of DISC-associated caspases, in turn,
allows for caspase 3 activation and executioner pathway signaling, though this can be
antagonized by the X-linked inhibitor of apoptosis protein (XIAP) (36).

The BCL-2 family interacts with the extrinsic pathway through caspase 8 activity.
Caspase 8 possesses the ability to bind and activate the BH3-only protein BID. BID
causes the activation of BAX and BAK and leads to mitochondrial permeabilization, as
described above. One of the released proteins, second mitochondrion-derived activator
of caspases (SMAC), can subvert the inhibitory activity of XIAP, potentiating apoptosis
(36).

The Intrinsic Pathway

The intrinsic pathway functions through the BCL-2 homolog-mediated release of
proapoptotic effectors into the cytoplasm. Initiation of the intrinsic pathway may be
due to a variety of intra- or extracellular signals, such as DNA damage, withdrawal of
growth factors, hypoxia, chemotherapy drugs, or a defective cell cycle (38, 39).

The BCL-2 homologous proteins BAX and BAK serve as a point of control for this
system. Possessing an inherently proapoptotic role, these proteins possess the ability to
effect changes in mitochondrial outer membrane permeability, allowing for the release
of the apoptotic effectors.

BAX and BAK associate with a mitochondrial voltage-gated ion cannel (VDAC) and
allow for the efflux of cytochrome c. This is antagonized under prosurvival conditions
by antiapoptotic proteins, such as BCL-2 and BCL-XL (40). Under prosurvival conditions,
the BCL-XL molecule binds to a 16-amino-acid sequence on the BH3 domain of BAK,
rendering it inactive (41). Upon reception of proapoptotic signals, mediated by BH3-
only proteins (42, 43), BAX undergoes a conformational change and inserts into the
mitochondrial membrane as an active monomer. At this juncture, the binding of BAX
by an antiapoptotic protein can still abort apoptosis (44). When BH3-only proteins reach
the threshold level that allows for the binding and inactivation of all available anti-
apoptotic proteins, the BAX monomer goes unbound. This allows for the formation of
a BAX homodimer and, subsequently, a homo-oligomer on the mitochondrial surface,
with up to four BAX molecules associating with each other, leading to the formation of
an apoptotic pore. The resultant alteration in mitochondrial membrane permeability
allows for initiator protein efflux (19, 45).

This cascade results in the release of the mitochondrial proteins cytochrome c,
Apaf-1, AIF, and SMAC/DIABLO into the cytoplasm (15, 46). Once in the cytoplasm, the
cytochrome c interacts with the apoptotic protease-activating factor (Apaf-1), which
activates the apoptosome, which in turn mediates the activation of procaspase 9 to
caspase 9. Activated caspase 9 effects a sequential activation of the executioner
pathway, ultimately leading to the death of the cell (47).

The Common Final Pathway

The executioner pathway is the final common denominator in the apoptotic cas-
cade, with caspase 3 serving as the point of confluence for the intrinsic and extrinsic
pathways. Activated caspase 3 activates CAD, an endonuclease, by cleaving its inhibitor,
ICAD. This allows CAD to bind to and degrade chromosomal DNA. Caspase 3 also
cleaves cytoskeletal proteins, such as actin, poly(ADP-ribose) polymerase 1 (PARP1),
fodrin, laminin, and gelsolin, disrupting the cell structure and intracellular transport (13,
48). The end result of this process is cell shrinkage and DNA fragmentation, features
that are described as the hallmarks of apoptotic cell death.
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The pathways involved in the apoptotic process and the interactions of BCL-2
proteins involved are summarized in Fig. 2.

HIV-1 AND THE BCL-2 FAMILY
HIV-1 Infection and BCL-2 Modulation

At the cellular level, HIV-1 infection begins with the virus gaining cellular entry,
integrating with the host genome, and utilizing the host machinery to translate viral
proteins and to assemble viral progeny. The virus exhibits a predilection for the CD4�

T lymphocyte as the target cell of choice but is also capable of establishing infection
in macrophages and monocytes, which also express the CD4 receptor. Though the
nascent stages of infection see viral replication and dissemination occur in the periph-
eral circulation, the large majority of viral replication in early infection occurs in
lymphoid follicles, with the gut lymph tissue serving as the major site (2).

The levels of BCL-2 and its homologs are modulated to different degrees during HIV
infection, resulting in either a proapoptotic or an antiapoptotic phenotype, varying
with the duration of infection and the type of infected cell (Table 1). Early infection is
characterized by the widespread death of lymphocytes through a variety of viral and
virally induced factors (reviewed in references 2 and 49), with the effects on BCL-2
expression playing a role. Viral replication affects BCL-2 homeostasis, favoring a pro-
apoptotic profile. Peripheral blood lymphocytes from HIV-1-seropositive individuals
show a correlation between the downmodulation of BCL-2 and active viral replication,
with the rate of replication inversely correlating with the levels of BCL-2 (50). The

FIG 2 Role of BCL-2 in the apoptotic process. (Left) Overview of the apoptotic pathways. The binding of an exogenous death-inducing
ligand to its respective cell surface receptor leads to the formation of the death-inducing signaling complex (DISC), with caspase 8
activation leading either to BID cleavage, which acts upon BAX/BAK, or caspase 3 activation and apoptosis. Noxious external stimuli
or an internal cellular dysfunction may lead to an imbalance between pro- and antiapoptotic members of the BCL-2 family. The
resulting release of cytochrome c, SMAC/DIABLO, and AIF activates caspase 9, which activates caspase 3, leading to apoptosis. (Right)
(A) At homeostasis, the proapoptotic proteins BAX and BAK and the activator BH3-only proteins are bound by the antiapoptotic
proteins BCL-2 and BCL-XL. (B) Upon reception of noxious stimuli, BCL-2 dissociates from the bound proteins, allowing BAX and BAK
to insert into the mitochondrial outer membrane. The BH3-only proteins may potentiate apoptosis either by directly activating the
proapoptotic proteins or by inactivating antiapoptotic proteins. (C) BAX undergoes homo-oligomerization on the mitochondrial
surface. (D) The resultant apoptotic pore allows for the release of cytochrome c, SMAC/DIABLO, and AIF, which activates caspase 9,
which activates caspase 3, leading to apoptosis.
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following text attempts to summarize the modulations in the levels of BCL-2 and its
homologous proteins throughout the infective process of HIV across the various
immune cell types.

CD4� T cells. CD4� T cells from untreated, infected patients have been observed to
differentially express BCL-2 compared to CD4� T cells from uninfected controls. These
studies have consistently demonstrated that while the relative expression of BCL-2 in
CD4 T cells may be up- or downregulated in comparison to its expression in the
controls, infected cells are generally more susceptible to programed cell death events.
It has been put forth that this finding may be explained by the concomitant upregu-
lation of proapoptotic members of the BCL-2 family members in HIV-infected cells,
altering the ratio between BCL-2 and its proapoptotic homologs, such as BAX. This
finding was confirmed in in vitro infections of the CEM T-cell lymphoblastoid cell line.
Additionally, it has been suggested that cells with low BCL-2 expression may experi-
ence rapid turnover and may therefore be detected at lower frequencies than cells with
a relatively higher expression of BCL-2. Additionally, acute viral infection has been
shown to demonstrate a decrease in BCL-2 in circulating CD4 T cells (51–53). BCL-2
levels have been shown to correlate inversely with the plasma viral load, with apoptotic
HIV-1-infected CD4� T cells consistently possessing decreased levels of BCL-2 (54). In
infected individuals early in infection, Gag-specific CD4� T cells exhibited decreased
BCL-2 expression compared to cytomegalovirus (CMV)-specific CD4� T cells from the
same individuals (55). Similarly, the expression of BCL-2 in HIV-1-specific CD4� T cells
is decreased in chronic infection and is associated with increased rates of apoptosis
(56). CD4� T cells in the S phase of their life cycle demonstrated decreased levels of
BCL-2 relative to other T cells in chronically infected patients and exhibited an increased
susceptibility to apoptosis upon T-cell receptor (TCR) or interleukin-2 (IL-2) stimulation
(57).

A recent study demonstrated that CD4 T cells isolated from patients on ART which
express OX40 are preferentially infected by HIV in the in vitro setting (58). OX40 activity
has clearly been demonstrated to upregulate BCL-2 and BCL-XL in CD4 T cells (59), and
preferential infection of OX40hi cells may facilitate HIV persistence through BCL-2
overexpression.

Viral tropism is another factor that has been shown to impact BCL-2 levels. As
mentioned earlier, during entry, the virus binds CD4 and one of two coexpressed
receptors, CCR5 and CXCR4. Based on the preferential binding of the virus to either one
or both of these receptors, the virus may be termed “CCR5 tropic,” “CXCR4 tropic,” or
“dual tropic.” It is of interest to note that virally induced BCL-2 modulations may vary
between CCR5- and CXCR4-tropic viruses. In vitro infections of follicular CD4� T cells
with both strains of virus demonstrated that the CCR5-producing follicular CD4� T cells
expressed larger amounts of BCL-2 than CXCR4-producing cells (60).

The decrease in the levels of BCL-2 was found to be reversible with the initiation of
ART, with the levels returning to normal or even increasing in comparison to those in
controls (54).

CD8� T cells. CD8� cytotoxic T lymphocytes are responsible for the majority of
antigen-specific immune effector functions. In untreated, HIV-1-infected individuals,
CD8� T cells displayed downmodulated BCL-2 expression profiles, which rendered
them susceptible to apoptosis (51). The HIV-1-specific CD8� T-cell subset demonstrated
greatly reduced expression of BCL-2 and impaired induction of its homolog, BCL-XL,
both of which resulted in increased rates of apoptosis (61). This population also
exhibited reduced BCL-2 expression when activated (CD38�), with the levels of BCL-2
being lower than those in CMV-specific CD8� T cells in both the activated and the
inactivated states (62). This finding suggests that HIV-1-specific CD8� T cells may
inherently be at a survival disadvantage compared to CD8� T cells specific to other
antigens. Interestingly, acute HIV-1 infection was shown to cause an increase in the
activation of CD8� T cells targeted at other viruses, with Epstein-Barr virus-specific T
cells exhibiting lower levels of BCL-2 than the controls (63). Similar to the findings in
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CD4� T cells, the levels of BCL-2 in S-phase CD8� T cells were also reduced; this
reduction was found to be reversible upon TCR or IL-2 stimulation (57).

HIV-1-specific CD8� T cells also exhibited lower levels of the IL-7 receptor (CD127)
in acute infection, which was associated with lower levels of BCL-2. The early initiation
of ART allowed for the establishment of a CD127-expressing memory phenotype pool
which demonstrated an increased proliferative capacity, a finding that could be attrib-
utable to the IL-7-induced increase in BCL-2 expression in these cells (64). HAART was
also shown to partially restore IL-7-induced BCL-2 expression in both CD4 and CD8
cells, though the response compared to that in healthy controls was still decreased (65).

The possible importance of BCL-2 to viral control is further illustrated by the finding
that CD8� T cells in elite controllers possessed higher levels of BCL-2 than CD8� T cells
in other chronically infected patient cohorts (66), providing an explanation for the
superior immune surveillance and viral suppression observed in these patients.

Dendritic cells. Though they serve as the major target, viral effects on BCL-2 and its
homologs are not restricted solely to lymphocytes. Dendritic cells are immune effectors
that participate in the innate immune response and may be characterized as plasma-
cytoid or myeloid.

Myeloid dendritic cells are antigen-presenting cells (APCs) that are responsible, in
acute HIV-1 infection, for the transfer of the virus to the CD4� lymphocyte (67). It has
been observed that circulating myeloid dendritic cells in HIV-1-infected individuals
show decreased levels of BCL-2, while, conversely, lymph node-derived myeloid den-
dritic cells show an increase in BCL-2 expression, creating a contrasting scenario of pro-
and antiapoptotic profiles in different tissues (68).

Plasmacytoid dendritic cells, which are responsible for the release of TNF-� in
response to stimulation, showed a decrease in BCL-2 levels in lymph tissue (68). The
potential loss of survivability due to this decrease could possibly result in a blunted
cytokine response. Considering the role of dendritic cells in the propagation of infec-
tion and considering that lymph tissue serves as the major site of replication (2), viral
modulations to induce or repress the expression of BCL-2 would allow for sustained and
effective viral dissemination.

Monocytes and macrophages. Acute in vitro infection models utilizing monocytes
showed a sharp decline in BCL-2 expression, followed by a rebound to basal levels. It
was established that a decreased level of cellular BCL-2 is essential to HIV-1 replication,
which was inhibited in cells with high BCL-2 expression. The acute decline was
compensated for over time by increased, virally induced BCL-2 transcription, which
allowed for the increased survival of infected cells (69).

HIV-1-infected macrophages were found to be resistant to apoptosis through an
upregulation of BCL-2 and BCL-XL accompanied by a decrease in the proapoptotic BAD
and BAX (70). In chronically infected patients, macrophages and microglia harboring
latent virus were, paradoxically, found to exhibit increased survival, despite the para-
doxical upregulation of the proapoptotic homolog BIM through an unknown mecha-
nism (71).

Triggering receptor expressed on myeloid cells 1 (TREM-1) is a surface receptor
expressed on macrophages which, when triggered, has been demonstrated to increase
macrophage survival through an induction of BCL-2 (72). The HIV-1 proteins Tat and
gp120 were found to upregulate the expression of the surface receptor TREM in
macrophages and increase their survivability, allowing for viral persistence (73).

Myeloid precursor cells. HIV-1 has been demonstrated to infect myeloid precursor
(CD34�) cells both in vitro and in vivo (74). A positive correlation between CD34
positivity and the levels of BCL-2 has been observed in acute myeloid leukemia (75).
Given that CD34� cells were shown to express HIV-1 DNA in patients who were on ART
(74), the upregulation of BCL-2 could provide a mechanism for the establishment of
latency in this cell type.

Viral Modulators of BCL-2 Homologs

The various components of HIV-1 have been shown to exert independent, contrast-
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ing effects on apoptosis and BCL-2 expression both to favor and to oppose cell death
(Fig. 3) (2). The effects of these proteins are summarized here.

Surface glycoproteins. The viral Env protein has been implicated as a contributor to
the widespread loss of cells during both acute and chronic infection (76). The Env
protein, present on the viral surface, may also be expressed on the surface of the host
cell following infection. Env-CD4 interactions may result in apoptosis through one of
three mechanisms, each of which causes BCL-2 family modulation. (i) The first mech-
anism is direct interaction with the virus. gp120 cross-linking has been demonstrated
to augment BAX and BAK activity by downmodulating the expression of BCL-2 in CD4�

T lymphocytes. Env may also increase the levels of BH3-only proteins, like PUMA, further
potentiating BAX and BAK activity (77, 78). (ii) The second mechanism is cell surface
expression of Env. Host cells expressing Env on their surface may cause the death of
bystander cells in two ways: through an Env receptor interaction, where surface-
expressed gp41 allows for a transfer of membrane lipids in a hemifusion event,
resulting in caspase-independent cell death (79), or through the formation of a syncy-
tium with bystander cells, leading to nuclear fusion and apoptosis (78). This syncytial
pathway causes increased transcriptional activity of p53 and NF-�B, resulting in an
increase in PUMA and BAX, leading to apoptosis (78, 80). (iii) The third mechanism is an
interaction with Env proteins which may be present in a soluble form in plasma. Soluble
Env protein gp120 has been observed to operate through a Fas/FasL- or BAX-
dependent fashion (81) and has been documented as being responsible for cell death
in a variety of cell types.

Viral proteins. Upon gp120 anchoring of the virus to the cell surface, gp41 facilitates
the transfer of viral proteins. These proteins contribute to the life cycle of HIV-1 and
associated lymphocyte depletion, which may be accomplished through their interac-
tions with BCL-2 homologs to modulate cell survival properties.

(i) Tat. The Tat protein is involved in viral replication and was one of the first
HIV-1-associated proteins that was shown to operate in a paracrine fashion, being

FIG 3 HIV protein effects on the BCL-2 family. HIV proteins may induce modulations in the levels of BCL-2
and its homologs through independent interactions.
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expressed from infected cells and causing a myriad of effects, including the modulation
of apoptosis regulators on both infected and bystander cells. The Tat protein has been
demonstrated to both induce and repress the expression of BCL-2, resulting in both cell
survival and death among different cell types.

In vitro, Tat effected an increase in BCL-2 promoter activity and mRNA expression
both in transfected cell lines and in peripheral blood mononuclear cells treated with
extracellular Tat, leading to the increased survivability in these cells (82). These effects
were demonstrable with picomolar levels of Tat, which are similar to the levels
observed in the plasma of infected individuals (83). Tat has also been shown to
antagonize Fas-mediated apoptosis by upregulating BCL-2 and c-FLIP transcription (84).
In monocytes, a dose-dependent increase in the levels of BCL-2 was observed and was
shown to directly antagonize the effect of TRAIL and abrogate apoptosis (85).

Alternatively, Tat has been shown to cause mitochondrial membrane permeabiliza-
tion and effect apoptosis facilitated by the proapoptotic homolog BIM in CD4 cells and
has also been demonstrated to directly cause the upregulation of the BH3 domain-only,
proapoptotic proteins BIM, PUMA, and NOXA through activation of the FOXO3a tran-
scriptional activator (86, 87). Expression of the Tat protein in hematopoietic progenitors
was found to correlate with the decreased transcription and translation of BCL-2,
leading to apoptosis (88). In activated CD8� T cells, exogenous Tat protein was shown
to cause an increase in BCL-2 expression, accompanied by a downregulation of the IL-7
receptor (CD127) (89). Given the importance of IL-7 in BIM- and BCL-2-dependent
lymphocyte homeostasis, the Tat protein may be able to effect increased rates of
apoptosis in this cell type through this mechanism.

(ii) Nef. The HIV-1 Nef protein has been shown to both induce and repress
apoptosis. In vitro, Nef-transfected CEM lymphoblastoid T-cell lines expressed markedly
reduced levels of the antiapoptotic proteins BCL-2 and BCL-XL, favoring a proapoptotic
profile (90).

Conversely, Nef has also been shown to phosphorylate and inactivate the proapo-
ptotic homolog BAD, preventing apoptosis (91). Simian immunodeficiency virus (SIV)
Nef-expressing cells exhibited a significant increase in BCL-2 expression, accompanied
by a decrease in susceptibility to Fas-mediated apoptosis (92). Nef has also been shown
to downmodulate the expression of the tumor suppressor P53 and reduce the associ-
ated apoptosis (93). P53 is known to effect apoptosis through BCL-2-related mecha-
nisms by both repressing BCL-2 transcription and promoting BAX and BH3-only protein
transcription (94).

The HIV-1 Nef protein was also shown to antagonize the BCL-2-associated protein
Beclin-1 and prevent cell death due to autophagy (95).

(iii) HIV-1 protease. HIV-1 protease was shown to independently cause an increase
in apoptosis in cells that were transfected with a plasmid coding for HIV-1 protease, and
this was found to be associated with the cleavage of BCL-2 (96). BCL-2 was inversely
associated with protease-mediated apoptosis, and overexpression was able to success-
fully inhibit activity (96). Protease was also shown to cleave procaspase 8 and activate
the BCL-2 homolog BID, resulting in mitochondrial membrane depolarization (97).
Protease-induced procaspase 8 cleavage may also generate the protein Casp8p41.
Casp8p41 was shown to be highly specific to HIV-1-infected CD4 cells predominantly of
the memory T cell subset and was shown to activate BAK and potentiate apoptosis (98,
99). The central memory subset of T cells also exhibited an increased BCL-2/procaspase
8 ratio, which allowed for cellular BCL-2 to bind and inactivate Casp8p41, allowing for
the survival of the HIV-1-infected cell population (100).

(iv) Vpu. Vpu is an HIV-1 viral protein involved in the budding and release of the
mature virion from infected cells and in the degradation of CD4 (101, 102). Vpu has
been demonstrated to possess apoptotic activity against CD4 lymphocytes, established
through the inhibition of NF-�B-induced expression of the antiapoptotic BCL-2 ho-
mologs BCL-XL and Bfl1/A1 (103).

(v) Vpr. The Vpr accessory protein, involved in HIV-1 replication, may exert pro- or
antiapoptotic modulations. Vpr was shown to activate BAX and cause apoptosis, acting
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through an ATR-dependent mechanism (104). Vpr has also been shown to inhibit NF-�B
activity in transfected cells, which, when considered in the context of the inherently
proapoptotic property of Vpr and the effects of NF-�B inhibition, suggests a possible
role for BCL-2 homolog downregulation (103, 105).

In contrast, in Jurkat cells transfected with Vpr, an increase in BCL-2 and a decrease
in BAX accompanying decreased susceptibility to cytokine-induced apoptosis were
observed (106).

Overall, the interactions of individual viral proteins and their effects on different cell
types are largely variable and may not fully represent the effect of actual HIV infection
on host cell expression of BCL-2 and its homologs. In the context of acute infection, the
presence of HIV proteins in the circulation possesses the potential to differentially
regulate BCL-2 and its homologs and to lead to bystander death or viral persistence.

In the era of modern ART therapy, it has been possible to largely limit the produc-
tion of HIV virions and viral proteins; however, the importance of these effects on the
BCL-2 family emerges with the concept of “leaky latency.” This term refers to the
low-level expression of HIV RNA transcripts and viral proteins in patients with otherwise
undetectable viremia. It has been demonstrated that in vitro infections of resting CD4
T cells resulted in the production of HIV Gag in the absence of activation or active viral
production (107). It has also recently been demonstrated that a small proportion of cells
from ART-treated HIV-infected individuals are translation competent and may produce
HIV Gag in vivo. Some of these Gag-positive cells were also seen to be CD4�, which was
suggested to be due to the expression of HIV Env or Nef, and it has been demonstrated
that the low-level expression of Nef occurs in infections of resting CD4� T cells in vitro
(108). These findings suggest that low levels of translation of HIV protein may still be
occurring in the absence of detectable viremia. Therefore, viral proteins may have
important biological effects on BCL-2 expression even during ART-induced, clinical
latency.

Nonviral Modulators of BCL-2 in HIV Infection

HIV infection induces an enormous number of changes to the levels of cytokines in
the circulation. Modulations in BCL-2 members may also occur as a result of these virally
induced differences in the expression of cytokines (reviewed in detail in reference 109).
The important interactions of some of these cytokines with BCL-2 and its homologs are
addressed here.

Interleukins are a set of secreted proteins that facilitate communication between
immune effectors, regulating a myriad of effects, including cell proliferation, activation,
and cycling (110). Some important BCL-2-centric interactions of interleukins in the
setting of HIV infection are discussed below.

Acute HIV infection was found to be associated with increased levels of IL-4 and
IL-10 and decreased levels of IL-2 in the circulation of infected patients. This profile was
observed to be reversible with the initiation of HAART, with a steady increase in IL-2
and a gradual decrease in IL-4 and IL-10 being noted (111). Interestingly, IL-4 and IL-2
have been described to differentially regulate the expression of BCL-2 in a murine
T-lymphocyte cell line, with IL-4 resulting in downregulation and IL-2 stimulating BCL-2
expression (112). IL-10 has been described to upregulate BCL-2 in T lymphocytes (113),
though in the setting of HIV infection, it is seen to be directly associated with the viral
load, suggesting that the upregulation of BCL-2 may be counteracted by concomitant
downregulation by other factors (114).

Interleukin-6 (IL-6) is a cytokine associated with chronic inflammation which has
been described as being upregulated in HIV infection even in the presence of suppres-
sive ART. In patients with failure in immune reconstitution, increased IL-6 has been
associated with low BCL-2 levels. This has been attributed to the IL-6-induced down-
regulation of CD127, which has been demonstrated to be essential for IL-7-induced
BCL-2 expression in T lymphocytes (109, 115, 116). IL-1� is another cytokine upregu-
lated in chronic infection which causes a similar downregulation of CD127 and the
resultant IL-7 activity (116).
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Lymphocyte homeostasis in normal settings is regulated by the ratio between BIM
and BCL-2, with IL-7 stimulation resulting in the upregulation of BCL-2 expression (117,
118). IL-7 has been shown to facilitate viral reservoir survival and promote viral
persistence in the presence of ART, suggesting a role for BCL-2 overexpression (119).

HIV-1 upregulates type I interferons (IFN-I), rendering the surrounding cells more
susceptible to Fas-mediated apoptosis through the upregulation of both Fas produc-
tion and the proapoptotic BCL-2 homolog BAK (120). It was observed that chronic
exposure to type I interferons correlated with an increased viral load and progressive
CD4� T-cell depletion in SIV infection, suggesting that IFN-I-induced apoptosis may be
a driving factor in the development of immunodeficiency in untreated individuals (109,
121). IFN-I levels were also seen to be elevated in the plasma of patients with chronic
HIV infection but were seen to revert to undetectable levels in patients receiving ART
(122).

BCL-2 IN HIV-1 LATENCY

Early viral infection is met with an attempted host immune response which is unable
to achieve complete viral clearance. The drop in the levels of plasma viremia accom-
panies a switch in the immune system from active clearance to surveillance, allowing
for the establishment of viral latency, with long-lived resting T cells serving as a
reservoir (7, 123).

The role of BCL-2 in the establishment and maintenance of viral persistence has
been well described in other chronic viral infective processes. B cells infected with
Epstein-Barr virus have been demonstrated to have significantly improved survival and
immune resistance resulting from viral protein-induced upregulation of BCL-2 (124).
Similarly, CD34� cells infected with latent cytomegalovirus (CMV) demonstrated in-
creased levels of BCL-2 (125).

The major challenge facing HIV eradication efforts is the persistence of inte-
grated, latent proviral forms despite HAART therapy. HIV preferentially establishes
latency in CD4� T cells (126). Multiple T-cell subsets have been described to possess
significant quantities of integrated proviral HIV DNA, including central memory,
naive, stem cell memory, transitional memory, effector memory, Th-1 polarized, and
follicular helper CD4� T cells (123, 127–133). However, the relative contribution of
these T cell subsets to the overall reservoir of latently infected cells remains
controversial. It has been demonstrated that CD4� T cells from aviremic HIV-
infected patients on HAART possess significantly higher levels of BCL-2 than CD4�

T cells from both viremic individuals and, interestingly, uninfected controls (134). It
has also recently been demonstrated that BCL-2hi CD4� T cells disproportionately
harbor the HIV-inducible proviral reservoir and are resistant to immune clearance
(135). Therefore, understanding the expression and activity of BCL-2 in these
various T-cell subsets is important if eradication strategies based on BCL-2 inhibi-
tion are to be developed, and these are reviewed here.

Central memory T cells have been described in some studies to be the primary
reservoir in latency and harbor significant quantities of HIV DNA (130). Central memory
T cells have been shown to have higher levels of BCL-2 expression in conjunction with
increased apoptosis resistance than effector memory T cells (100). Central memory cells
from HIV-infected patients were also shown to demonstrate an altered BCL-2/pro-
caspase 8 ratio, favoring an antiapoptotic profile (100).

Naive T cells are increasingly becoming recognized as an important reservoir in HIV
latency. The percentage of naive T cells harboring HIV DNA remains constant even after
ART initiation, in contrast to the steady decline observed in memory T cells, suggesting
that these cells may be responsible for sustained viral persistence (129). Naive T cells
from aviremic patients on HAART demonstrated an increased expression of BCL-2
compared to those from both viremic patients and uninfected controls. This was also
seen to be accompanied by an increase in cell number (134). The recent demonstration
that naive T cells also harbor amounts of latent, replication-competent HIV-1 compa-
rable to those in memory T cells further illustrates the importance of this subset to
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latency (136). The increased BCL-2 levels seen in this subset may confer greater
survivability in this subset and directly facilitate viral reservoir establishment and
persistence.

Regulatory T cells (TReg) are another subset of CD4 T lymphocytes that have been
identified to be an important reservoir (reviewed in reference 137). These cells are
described as expressing high levels of CD25, CD62L, CTLA-4, CD103, and the
glucocorticoid-induced TNF receptor-family related (GITR) gene, accompanied by the
expression of FOXP3 gene, which has been described to control TReg function (138,
139).

T lymphocytes have been shown to be apoptosis resistant following CTLA-4
activation-induced BCL-2 upregulation (140), and CTLA-expressing PD-1� memory CD4
T cells isolated from lymph nodes were found to include a high frequency of TReg CD4
T lymphocytes and were shown to harbor a large and stable viral reservoir in ART-
treated SIV-infected rhesus macaques. These cells were shown to express significantly
higher levels of BCL-2 than other cell subsets. This subset was also shown to harbor
large amounts of HIV DNA in ART-treated individuals (141).

Stem cell memory T cells (TSCM) have recently been identified to be a significant
reservoir of HIV proviral DNA (131, 132). This cell subset was identified within a group
of CD45RA�, CCR7�, CD62L�, CD27�, CD28�, IL-7 receptor alpha-positive (IL-7R��)
cells, which also expressed high levels of CD95, IL-7R�, CXCR3, and LFA-1 (142). The
TSCM subset was characterized to overexpress BCL-2 in comparison to its expression in
other T-cell subsets and demonstrated greatly enhanced survival and propagative
potential (142, 143). These characteristics have brought members of this subset under
increasing scrutiny as important players in the latency process (reviewed in reference
144). The contribution of the TSCM subset to the total latent reservoir was seen to
gradually increase with long-term ART and, importantly, was recognized to be inversely
associated with total HIV DNA in the CD4� T-cell pool, indicating a stable and persistent
reservoir. This cell type has also been demonstrated to be a reservoir for replication-
competent HIV proviral forms in elite controllers (131, 145). The underlying mechanisms
responsible for the persistence of latency in this subset warrant investigation, with the
constitutively high BCL-2 expression possibly contributing toward the observed en-
hancement in cell survival.

Follicular T-helper cells are a subset of CD4� T cells that have been demonstrated
to serve as a reservoir for proviral DNA (133). Follicular T cells (CXCR5�) derived from
tonsillar tissue were found to constitutively express higher levels of BCL-2 than extra-
follicular cells (CXCR5�). Upon infection, it was demonstrated that CXCR5� CD4 T cells
expressed higher levels of BCL-2 than infected CXCR5� cells, with this finding being
consistent regardless of viral tropism (60).

More recently, the role of PD-1-expressing follicular T-helper cells has come under
increasing scrutiny as a result of the large and stable reservoir detected in this subset
(146). It has been demonstrated that in chronic infection, PD-1 expression correlated
inversely with the expression of BCL-2, with PD-1hi-expressing CD4 T cells from HIV-
infected patients exhibiting decreased levels of BCL-2 compared to PD-1low-expressing
and uninfected CD4 T cells. The initiation of ART was shown to revert PD-1 expression
to levels comparable to those in uninfected controls (147). Though it is yet to be
elucidated, it stands to reason that the phenotypic reconstitution observed in PD-1-
expressing cells, in which the phenotype is similar to that in uninfected controls
following the initiation of ART, would be accompanied by an increase in the levels of
BCL-2 expression, possibly facilitating viral persistence.

It therefore stands to reason that ART may exist in an interesting duality, effecting
viral clearance while also playing a critically important role in establishing the viral
latent reservoir. The restoration of BCL-2 levels to physiological levels would allow for
the survival of infected cells while simultaneously antagonizing viral release, thereby
precipitating latency.
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BCL-2 IN HIV LATENCY STUDIES

One of the challenges to studying HIV-1 latency is the difficulty in establishing an
accurate and reproducible model of latency in vitro. This issue stems from the inade-
quacies of culture being able to simulate the conditions required for latency to occur.
Latency models are largely grouped into pre- and postintegration models, depending
on whether viral integration occurs, with the latter more closely mimicking in vivo
latency. The different models of latency have been reviewed extensively elsewhere
(reviewed in reference 148). The following sections attempt to examine the role of
BCL-2 in the establishment of latency in the in vitro setting.

IL-7 Stimulation

The physiological change from the activated to the resting state occurs, in vivo,
secondary to IL-7 stimulation (149). A model of latency was developed to more
accurately mimic these changes and to include the effects of IL-7. Briefly, primary CD4
T cells were activated by exposure to monocyte-derived dendritic cells (MDDC) and
subsequently infected with HIV. At day 24, the infected cells were sorted to exclude
naive cells and subsequently cultured in low doses of IL-7 for up to 4 weeks. Phenotypic
analysis of these cells revealed a largely central memory phenotype and demonstrated
productive viral replication on restimulation (150). The role of IL-7 in the sustenance of
resting CD4� T cells has been attributed to the IL-7-induced upregulation of BCL-2
expression (118).

BCL-2 Transfection Model

BCL-2, which is a downstream protein to IL-7 signaling, has been successful in
establishing a reproducible model of viral latency following transfection into primary
CD4� T cells in vitro (151, 152). The model was established based on the premise that
the results of IL-7 signaling could be limited to purely the prosurvival effects by
transfecting cells with BCL-2. This was shown to allow BCL-2-transfected cells to survive
in the quiescent state necessary for latency establishment (152). Briefly, primary CD4 T
cells were transduced with a lentivirus containing a BCL-2 overexpression construct.
This BCL-2 overexpression allowed for the survival of subsequently HIV-infected cells for
an extended period of time in the absence of cytokines, allowing for a spontaneous
reversion to viral latency. The BCL-2-transfected model effectively replicates the cycle of
CD4� cell activation, infection, and a subsequent return to the resting state that is seen
in in vivo HIV-1 infection (151). HIV-1 integration site characteristics in this model were
also found to be similar to those observed in patient samples, though differences in
gene ontology were observed between the integration sites seen in patient samples
and those seen in the in vitro model (153).

Chemokine Stimulation Model

Chemokine stimulation of CD4 T cells prior to infection with the CCR7 agonists
CCL19 and CCL21 has been recognized as another efficient and reproducible model of
latency (154, 155). This model involves the incubation of isolated resting CD4 T cells
with a CCR7 agonist— either CCL19 or CCL21—prior to infection with HIV-1. High levels
of stable integration with low levels of reverse transcriptase activity were observed
(154). It was also demonstrated that active viral production is inducible following
mitogen-induced activation, similar to the findings for ex vivo samples from latently
infected patients (155). CCR7 stimulation has canonically been described as affording
cells an apoptosis-resistant phenotype across various cell types and, in CD4 T cells, a
limitation of proliferation (156–159). The antiapoptotic effect of CCL21/CCR7 was
demonstrated to be a direct result of BCL-2 overexpression and BAX downregulation in
studies conducted in lung cancer cell lines (160). CCL21 presentation on breast cancer
cell lines afforded interacting dendritic cells an antiapoptotic phenotype resulting from
an overexpression of BCL-2 and a reduction in caspase 3 (158). CD8 T cells expressing
CCR7 were seen to be more apoptosis resistant due to an overexpression of BCL-2 and
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decreased expression of the Fas ligand and BAX. CCL19 and CCL21 stimulation of these
cells was seen to upregulate BCL-2 expression (161).

Though studies have yet to explicitly describe this correlation, the pretreatment of
resting CD4 T cells with CCR7 agonists may be accompanied by an increase in the basal
expression of BCL-2 or other antiapoptotic homologs and therefore facilitate cell
survival in the setting of acute infection, allowing for the infected cells to transition to
latency.

Ex Vivo Expansion

A more recent development in latency models involves the isolation and expansion
of memory CD4 cells from infected patients on ART. Briefly, in this model, isolated
memory (CD45RA�) CD4 T cells were cultured with phytohemagglutinin, IL-2, natural
human IL-2/T-cell growth factor (TCGF), and irradiated feeder cells in the presence of
antiretroviral therapy, allowing cellular expansion without new rounds of infection. The
expanded cells were found to revert to a resting state in culture and were found to
stably express proviral forms upon reactivation (162). As mentioned above, the HIV-
infected CD4� T cell reservoir expresses high levels of BCL-2 ex vivo and in vivo, which
may help in the establishment and maintenance of the reservoir in this ex vivo
expansion model.

THE THERAPEUTIC POTENTIAL OF BCL-2 INHIBITORS IN HIV-1 LATENCY
REACTIVATION AND CURE

The major strategy under investigation for viral reservoir elimination is the shock-
and-kill method, in which the latent virus is reactivated using a latency-reactivating
agent (LRA), followed by viral elimination either through effective immune clearance or
as a result of therapeutic agents (163). The major caveat to the shock-and-kill approach
is the inadequate ability of current shock-and-kill therapy to achieve reactivation of all
replication-competent proviral forms and achieve clearance (126, 164). It therefore
becomes important to consider the administration of two or more concurrent therapies
that would help clearance of virus from cells in which it is latent both through
preferential apoptosis and through increased immune activity.

Given the dual role that BCL-2 homologs possess with regard to cell survival,
increased cell apoptosis could be achieved either by a potentiation of the effects of
proapoptotic molecules or by antagonism of antiapoptotic molecules. Both these
effects may be achieved through chemical mimicry of BH3-domain proteins which
possess the ability to achieve either outcome.

While the effects seen in preclinical studies are a significant proof of concept, the
major disadvantage with BH3 mimetics which act on multiple BCL-2 homologs stems
from the relative ubiquity of the BCL-2 family. This was illustrated during the develop-
ment and testing of navitoclax (ABT263), which possesses similar activity against BCL-2
and BCL-XL but minimal activity against BCL-W (165), with the antagonism of BCL-XL
being responsible for severe thrombocytopenia (166). This limiting side effect was
overcome with the discovery of the selective BCL-2 inhibitor venetoclax (ABT199) (167).

Venetoclax has been shown to reduce the reservoir size and reduce the proviral load
and quantitative viral outgrowth assay estimates of the viral reservoir size postreacti-
vation in in vitro settings (168). Use of the combination of venetoclax with the LRA
bryostatin against latently infected cells generated using the primary T-cell model was
shown to greatly potentiate the clearance of replication-competent virus (169).

BCL-2 inhibition with venetoclax may also result in a preferential increase in
apoptosis of infected cells through the potentiation of the proapoptotic, HIV-1-specific
protein Casp8p41. Casp8p41 is preferentially bound and inactivated by BCL-2, and
antagonism of BCL-2 resulted in Casp8p41 binding to and activation of BAK, resulting
in apoptosis (99). Given the specificity of Casp8p41 for HIV-1-infected cells, BCL-2
inhibition was shown to achieve the targeted apoptosis of HIV-1-infected cells while
resulting in minimal bystander cell death (168) (Fig. 4).

This principle was tested in a recently conducted study which demonstrated that
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while the effects of venetoclax against viral latency generated by in vitro latency
models were consistent and reproducible, similar effects were not seen against
central memory T cells derived from patients on ART with venetoclax monotherapy.
It was, however, observed in the same study that the addition of venetoclax greatly
augmented HIV-1-specific CD8� T-cell cytotoxic activity against reactivated virus
from patient samples (135).

The experimental model compared the activity of in vitro-generated HIV-1-specific
CD8� T cells against central memory T cells from patients virally suppressed with ART
with and without therapy with venetoclax. The study observed a significant reduction
in HIV-1 DNA across both conditions but did not see a difference in the size of the
inducible reservoir in the untreated group, consistent with previously published find-
ings (169). The addition of venetoclax, however, significantly augmented CD8� T-cell
clearance of the viral reservoir, illustrating that the addition of venetoclax may result
not only in the preferential apoptosis of HIV-1-infected cells but also in increased
immune efficacy against the viral reservoir (135, 169).

Potential resistance to BH3 mimetics, however, is a factor to be considered in their
application in the setting of HIV-1. Lymphoma cell lines that were initially responsive to
treatment were seen to develop resistance following chronic treatment with the BH3
mimetic ABT737. This was attributed to a stable overexpression of Bfl1/A1 and MCL-1,
accompanied by a dynamic increase in both proteins following reexposure (170).
Furthermore, consideration of the suggestion that resistance to BCL-2 inhibitors may be
conferred by upregulation of any of the antiapoptotic homologs, including those that
serve as specific targets of the BH3 mimetic (47), presents an important caveat to the
usage of these agents in the treatment of HIV-1, given the ability of the virus to
upregulate not only BCL-2 but also a plethora of homologs.

To overcome similar challenges in oncology, combination therapies were consid-

FIG 4 BCL-2 inhibition assists viral clearance in HIV infection. HIV-infected central memory T cells express higher levels of BCL-2
and possess higher BCL-2/procaspase 8 ratios than uninfected cells, giving the infected cells a survival advantage over
uninfected cells and allowing for the persistence of the viral reservoir. Increased levels of BCL-2 bind Casp8p41, facilitating cell
survival, whereas decreased levels of BCL-2 allow for Casp8p41 to associate with BAK and induce cell death. Treatment with
the BCL-2 antagonists have demonstrated the ability to (i) selectively induce apoptosis in infected cells through a Casp8p41-
mediated mechanism, (ii) reduce proviral HIV DNA and viral outgrowth, suggesting a reduced viral reservoir size, and (iii)
augment HIV-infected cell killing mediated by CD8� T cells, causing reduced proviral HIV DNA and viral outgrowth.
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ered and were shown to be effective (171). Combination therapy with navitoclax and
histone deacetylase (HDAC) inhibitors like vorinostat was shown to overcome BCL-2
homolog-mediated antagonism in cancer cells (172). In the context of HIV-1, the latency
reversal properties of HDAC inhibitors have seen them become exciting prospects for
clinical use in viral reactivation (reviewed in reference 173). Given that vorinostat has
been demonstrated to effectively reverse HIV-1 latency but minimally impact the total
latent reservoir (174), combination therapy with BH3 mimetics might serve to accom-
plish viral reactivation and latency clearance while also avoiding homolog-mediated
treatment resistance. Panobinostat is another HDAC inhibitor which was similarly
shown to achieve viral reactivation while having a minimal impact on the total number
of latently infected cells (175). Panobinostat has been demonstrated to have a profile
similar to that of vorinostat in the context of BCL-2 homolog antagonistic activity and
has been shown to potentiate venetoclax activity in acute myeloid leukemia (176).
Given the independent activity of these agents in HIV-1 infection, combination therapy
might effectively accomplish both aspects of the shock-and-kill adage.

Proteasome inhibitors have been described to independently induce latency reac-
tivation and reduce viral titers (177, 178). Interestingly, in melanoma, synergistic effects
were seen with the proteasome inhibitor bortezomib and ABT737 through antagonism
of MCL-1 via upregulation of NOXA (179). The proteasome inhibitor ixazomib has also
been shown to effect a similar upregulation of NOXA (180). Both ixazomib and
bortezomib were observed to prevent Casp8p41 degradation and selectively induce
cell death in HIV-1-infected cells (178). Given that a similar potentiation of Casp8p41-
induced apoptosis was observed with the BCL-2 inhibitor venetoclax, combination
therapy may achieve synergism and greater viral reservoir clearance, while it may also
provide protection against MCL-1-mediated venetoclax resistance.

Another avenue for combination therapy is through the use of selective MCL-1
inhibitors (171). Numerous compounds currently under study are able to specifically
target MCL-1 (reviewed in reference 181). Combination therapy with navitoclax and
MCL-1 inhibitors has been demonstrated to have increased efficacy in cancer and may
provide another alternative avenue for HIV-1 therapy (182).

CONCLUDING REMARKS

As the battle against HIV continues and conventional ART fails to target latently
infected cells, the exploration of alternative therapies is necessary to achieve a final
cure. BCL-2 and its homologs undergo numerous modulations over the course of the
HIV infective process. Studies are required, however, to clearly define the differences in
BCL-2 expression between T-cell subsets in lymphoid tissues and the efficacy of
anti-BCL-2 therapy in targeting these cells. With the advent of highly specific and
tolerable BCL-2 inhibitors, the clinical applicability of these agents increases in rele-
vance. These compounds have shown specific activity against HIV-infected cells in vitro
both in the context of acute infection and in the shock-and-kill approach in the setting
of latency. A challenge facing the clinical application of these compounds, however, is
the relatively low tissue penetrability that these agents currently possess.

As studies progress in an attempt to answer these issues, the application of BCL-2
inhibition in the setting of HIV infection and latency might represent a novel strategy
to bring HIV cure closer to reality.
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